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Abstract

The study of geometric flows for smoothing, multiscale representation, and analysis
of two and three dimensional objects has received much attention in the past few
years. In this paper, we first present results mainly related to Euclidean invariant
geometric smoothing of three dimensional surfaces. We describe results concerning the
smoothing of graphs (images) via level sets of geometric heat-type flows. Then we
deal with proper three dimensional flows. These flows are governed by functions of the
principal curvatures of the surface, such as the mean and Gaussian curvatures. Then,
given a transformation group G acting on R”, we write down a general expression for
any G-invariant hypersurface geometric evolution in R™. As an application, we derive
the simplest affine invariant flow for surfaces.
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1 Introduction

Geometric smoothing, multiscale representation, and analysis of two dimensional (2D) and
three dimensional (3D) objects are of extreme importance in different applications of com-
puter graphics, CAGD, and image analysis. These can be used for smoothing out noise or
for the representation of objects at different levels of detail. When one is interested in the
geometry of the given object, it is important to perform these operations in an intrinsic geo-
metric manner. Thus image processing via geometric driven diffusion-type flows has become
a major topic of research in the last few years [54]. In our work, the object is deformed via
a partial differential equation which is invariant with respect to a given symmetry group.

The smoothing and multiscale representation of planar objects was originally performed
by filtering their boundary with a Gaussian filter [9, 37, 68]. This process is equivalent
to deforming the curve via the classical heat flow which is of course an extrinsic process
unrelated to the geometry of the given image. As we will see in Section 2, this and other
problems of the classical heat flow can be effectively solved by replacing it with geometric
heat flows that were developed during the last few years [26, 27, 51, 55, 57, 59, 60].

The first question with which we want to deal in this paper is the problem of finding

analogous flows for smoothing and multiscale representation 6f 3D objects: We first present -

results on geometric smoothing of graphs (images), via geometric smoothing of their level
sets. We will see that, based on the theory of planar gecometric heat flows, useful results
may be obtained. We then discuss the smoothing of surfaces via proper three dimensional
flows. “In this case, the surface deforms with velocity given by functions of its principal
curvatures. In order to make the paper accessible to the largest possible audience, many
of the background results are presented in a informal way, i.e., without the mathematical
details which may be found in the relevant references. The main goal of this part is to review
the literature on surface evolution relevant to volumetric smoothing.

In the second part of the paper, we extend the results first reported in [51] for planar
curves, to any dimension and any Lie group. We present the most general form of an invari-
ant geometric flow for hypersurfaces. We show that the invariant flows can be formulated
as functions of the invariant metric and invariant curvature. which are the basic differential
invariant descriptors, together with the variational (Euler-Lagrange) derivative correspond-
ing to this metric. We also show that if the transformation group is volume preserving, this
variational derivative is invariant as well. Then, as an example, we derive the simplest affine
invariant geometric flow for 3D surfaces.

This paper is organized as follows: In Section 2, we describe some of the key results related
to planar curve geometric smoothing, which will be helpful to motivate and understand the
surface theory. Basic concepts of 3D surface differential geometry are given in Section 3.
Then, in Section 4 we deal with a “23”D theory of geometric flows of surfaces which is
related to smoothing via level sets. Section 5 deals with proper 3D geometric smoothing.
In Section 6, we define the variational derivative, which we will need in order to formulate
and prove our result on the general form of an invariant hypersurface geometric evolution
in Section 7. Then in Section 8, we discuss affine invar'ant flows of surfaces, and some
concluding remarks are given in Section 9.



2 Planar curve smoothing

In this section, we review some results on geometric smoothing of planar curves, which we
wish to extend to surfaces and in general to any dimension. As we will see in the sequel,
some of the desirable results that hold for planar curves, do not hold for surfaces. The results
described in this section will also be helpful in Section 4, where we describe the possibility
of smoothing graphs via level-sets smoothing.

We consider now planar curves deforming in time, where “time” represents “scale.” Let
C(p,t) : S x [0,7) — R2? denote a family of closed embedded curves, where ¢ parametrizes
the family, and p, independent of ¢, parametrizes each curve. Originally, the classical heat
flow was used for smoothing curves [9, 37, 38, 39, 40, 42, 44, 54, 68, 70]. In this case, the

curves deform according to the following flow:

oc _ o
8t ~ op* (1)

It is well-known that C(p,t) = [z(p,t),y(p,t)]”, satisfying (1), can be obtained from the
convolution of z(p,0),y(p,0) with the Gaussian G(p,t) defined by

6,0) = e { |, (2

In order to separate the geometric concept of a planar curve from its formal algebraic
description, it is useful to refer to the planar curve described by C(p,t) as the image (trace)
of C(p,t), denoted by Img[C(p,t)] [57]. Therefore if the curve C(p,t) is parametrized by a
new parameter w such that w = w(p, t), > 0, the two images agree:

Img[C(p, )] = Img[C(w,1)].

We see that different parametrizations of the curve will give different results in (1),
i.e, different Gaussian multi-scale representations. This is an undesirable property, since
parametrizations are in general arbitrary, and may not be connected with the geometry
of the curve. We can attempt to solve this problem choosing a parametrization which is
intrinsic to the curve, i.e., that can be computed when only Img[C] is given. A natural
parametrization, for Euclidean invariant smoothing, is the Fuclidean arc-length defined by

o) = [ T 116

and the re-parametrization is obtained via C ov. This parametrization means that the curve
is traveled with constant velocity, || C, ||= 1. The initial curve Co(p) can be re-parametrized
as Co(v), and the Gaussian filter G(v, t), or the corresponding heat flow, is applied using this
parameter. The problem is that the arc-length is a time-dependent parametrization, i.e., v(p)
depends on time. Also, with this kind of re-parametrization, some of the basic properties of
scale-spaces are violated. For example, the order is not preserved, i.e., if Co and G, are two
initial curves, boundaries of planar shapes, such that Cy C éo, it is not guaranteed that this



order is preserved in time. Also, the semi-group property, which means that C(¢;) can be
obtained from C(t;) for any 0 < ¢, < t;, can be violated with this kind of re-parametrization.
The theory described below solves these problems.
Assume now that the family C(p,t) evolves (changes) according to the following general
evolution equation
{ % =aT + BN, (3)
C(p,0) = Co(p),

where N is the inward Euclidean unit normal, T is the unit tangent [64], and « and S are
the tangential and normal components of the evolution velocity v/, respectively.

The following lemma shows that under certain conditions, the tangential velocity does
not affect Img|-].

Lemma 1 ([21]) Let B be a geometric quantity for a curve, i.e., a function whose defini-
tion is independent of a particular parametrization. Then a family of curves which evolves
according to

Co = oT + BN
can be converted into the solution of

for any continuous function &, by changing the space parametrization of the original solution.
Since B is a geometric function, B = 3 when the same point in the (geometric) curve is
considered.

In particular, this result shows that Img[C(p, t)] = Img[C(w, )], where C(p,t) and (f(w, t)
are the solutions of

C=oT + BN
and
ét = BN ’
respectively. For proofs of the lemma, see [21] and [57].

In other words, Lemma 1 means that if the normal component of the velocity is a geomet-
ric function of the curve, then Img[-] (which represents the “geometry” of the curve) is only
affected by this normal component. The tangential component affects only the parametriza-
tion, and not Img(-] (which is independent of the parametrization by definition). Therefore,

assuming that the normal component # of 7 (the curve evolution velocity) in (3) does not
depend on the curve parametrization, we can consider the evolution equation

oc

= = BN, (4)




where B =i - N , 1.e., the projection of the velocity vector on the normal direction.

The evolution (4) was studied by different researchers for different functions 8. A key
evolution equation is the one obtained for # = &, where & is the Euclidean curvature defined
by [64]

wem) 29
T Ge2
In this case, the flow is given by
ac -
— = , 5
o =N (5)

Equation (5) has its origins in physical phenomena [6, 24, 28]. It is called the Fuclidean
shortening flow, since the Euclidean perimeter shrinks as fast as possible when the curve
evolves according to (5) [28]. Gage and Hamilton [26] proved that a planar embedded
convex curve converges to a round point when evolving according to (5). (The term “round
point” has the following meaning: Let C(t) be the curve at time ¢, which shrinks to a point
as t — T*. Dilate C(t) to get a new curve C(t) centered at the origin and enclosing area .
Then we say that C(t) converges to a round point provided the dilated curves converge to
the unit circle as ¢t — T*.) Grayson [27] proved that a planar embedded smooth non-convex
curve remains smooth and simple, and converges to a convex one, and from there to a round
point via the Gage and Hamilton result. Note that in spite of the local character of the
evolution, global properties are obtained, which is a very interesting feature of this flow. For
other results related to the Euclidean shortening flow, see [1, 6, 21, 26, 27, 28, 35].

Next note that if v denotes the Euclidean arc-length, then [64]

- 0C

K'N:—a:;.

Therefore, equation (5) can be written as
Ct - Cm,. (6)

Note that equation (6) is not linear, since v is a function of time (the arc-length gives a
time-dependent parametrization). Equation (6) is also called the (Fuclidean) geometric heat
flow (compare it with the classical heat equation (1)).

Equation (6) (or (5)) has been proposed by different researchers for defining a multi-
scale representation of closed curves [36, 42, 69] (see [42] for extended analysis). Note that
in contrast with the classical heat flow, the Euclidean geometric one defines an intrinsic,
geometric, multi-scale representation. Of course, in order to complete the theory, we must
prove that all the basic properties required for a multi-scale smoothing hold for the flow (6).
This can be found in [42, 60], and in general are straightforward consequences of the results
in [6, 26, 27].

Note that equation (5) (or its analogue (6)) is only Euclidean invariant, since it is based
on Euclidean differential geometry. We have extended this theory to the affine group in
(55, 56, 57, 58, 59] using affine differential geometry, and also presented a general approach
for the formulation of geometric flows for any Lie group in [51, 59]. In general, let r denote

5




the invariant arc-length of a given Lie group, i.e., its simplest invariant parameterization.
The geometric heat flow of the group is obtained via

oC(p,t) _ 0°C(p,t)
5t ort (7)
C(p,O) = CO(p)‘

For linear groups, it is easy to prove that, since r is an invariant of the group, so are C,,
and the flow (7). The flow is invariant for non-linear groups as well, since Z is the unique
invariant derivative of the group (see [51, 59]). More general invariant flows are obtained if

the group curvature x is incorporated into the flow:

8C(p, t) &°C(p, t)
ot (% x> ) -arLz’ (8)
C(p,0) = Co(p),

where ¥(-) is a given function. Since the group arc-length and group curvature are the basic
invariants of the group transformations, it is natural to formulate (8) as the most general
geometric invariant flow. In [51] we proved that (8) is indeed the most general geometric
invariant flow for subgroups of the projective group, and the geometric heat flow is the
simplest possible one for a number of important groups. These results we extend here for
higher dimensions and general Lie groups.

The group normal C,, is in general not perpendicular tc the curve, i.e., it is not parallel
to the Euclidean unit normal /. Based on Lemma 1, we know that the effective velocity
1s obtained by the projection of the group normal onto the Euclidean normal. Using this
result, the flows (7) and (8) can be expressed in Euclidean terms by projecting the group
normal onto the Euclidean normal, and expressing the group curvature via the Euclidean
one and its derivatives. For example, in the affine case, where r is replaced by the affine
arc-length s given by [12, 55]

s(p) := /OP[C'&C&}I/"df,

the Euclidean-type geometric flow analogue to (7) is given by [55, 56, 57, 59]

C = kN, (9)

We proved that as in the Euclidean case, any non-convex curve converges to a convex one,
and from there to an ellipse, when evolving according the aifine heat flow. We also showed
that the curve remains smooth, and all the properties of scale-spaces hold [57]. This low was
also discussed by Alvarez et al. in [2]. Using the theory of viscosity solutions and evolution
of graphs, they also proved the uniqueness of the low under a number of conditions, which
are natural for image processing. In [51] we proved that this flow is unique solely under the
requirement of being “simplest flow with the affine group as symmetry group.” This flow was
also used in [2, 58] for image enhancement (see next section). For results on other interesting
groups, as the similarity and projective ones, see [51, 59, 60]. It is important to note that
for example in the similarity and projective case, in contrast with the Euclidean and affine
ones, the evolving curve can develop singularities [51].

6



Before concluding this section, let us point out another of the undesirable properties of
Gaussian filtering that is also solved using geometric heat flows. A curve deforming according
to the classical heat flow shrinks in a non-computable form. This is due to the fact that the
Gaussian filter also affects low frequencies of the curve coordinate functions [44]. Different
authors proposed different solution to this problem, while always remaining in the area of
Gaussian or linear filtering, i.e., non-geometric smoothers [31, 40, 44]. When a curve evolves
according to a geometric heat flow, the shrinking factor can be computed, since the rate of
change of area, length, or any other geometric quantity can be computed exactly. Based on
this, in [60] we showed how to replace the geometric heat flow (7) by an analogous one, which
keeps the area (length) constant. The approach is based on formulating a new geometric
flow which deforms the curve according to the flow (7) while simultaneously expanding the
plane in order to preserve area (length). This way, a geometric smoother without shrinking
is obtained.

3 Basic 3D differential geometry

In this section we present basic concepts on surface differential geometry. For details see for
example [13, 30, 64]. We first define a regular surface:

Definition 1 A subset S C R? is a regular surface if, for each p € S, there exists a
neighborhood V and a map x : U — VNS of an open set U C R? such that

1. x 1s differentiable. This means that if we write
x(u,v) = [z(u,v),y(u,v), 2(u,v)] , (v,v) €T,

the functions z,y, z have continuous partial derivatives of all orders in U.

2. x 1s a homeomorphism. This means, using the previous condition, that x has an inverse
which s continuous.

3. For each q € U, the differential dx, : R? — R3 is one-to-one.

The following definitions present two special kinds of regular surfaces which will be ana-
lyzed in detail in following sections: graphs and star-shaped surfaces.

Definition 2 If ® : U C R? — R is a differentiable function, then the surface given by
(z,y, ®(z,y)), for (z,y) € U, is a regular surface and is called a graph.

Definition 3 A regular surface that can be represented as a map from S? to R2 is called
a star-shaped surface with respect to a point zo in its interior if every ray starting at z,
intersects the surface only once.

Definition 4 The tangent plane T,(S) to a regular surface S at a point p € S is the set
of tangent vectors to all parametrized curves of S passing through p. The reqularity of the
surface guarantees the existence of such a plane.

7



Given a parametrization of x : U C R? — S of a regular surface S at a point p € S, we
can obtain the unit normal vector to the surface at each point g of x(U) by the rule

N(g) = 20X (g

Based on this normal vector, we can define the Gauss map:

| xu A X, |

Definition 5 LetS C R? be a surface with an ortentation given by N. The map N:S—R3
takes its values in the unit sphere S?, and is called the Gauss map of S.

The following definition presents the normal curvature of a curve on a regular surface.

Definition 6 LetC be a regular curve in S passing throughp € S, & the Euclidean curvature
of C at p, and cos§ :=< N N >, where N is the normal vector to the curve and N the
normal vector to S at p. The number Kn := Kk cos 8 is called the normal curvature of C C S
at p.

Therefore, the normal curvature is the length of the projection of the curvature vector
sN over the normal to the surface at p. See Figure 1. An important result [64] guarantees
that all curves lying on a surface S and having at a given point p € § the same tangent
line, have at this point the same normal curvature. Therefore, the normal curvature is an
intrinsic property of the surface and the given direction on it, and not of the selected curve.
Given a unit vector v € T,(S), the intersection of the plane containing v and N is called the
normal section of S at p along v. In a neighborhood of p, this normal section is a regular
curve, whose normal vector at p is in the direction of N', and its curvature is therefore equal
to the normal curvature along v at p.

We are ready to define the principal curvatures of S at a point p:

Definition 7 The mazima (k,) and minimal (k) normal curvatures at p € S, for all
directions v € T,(S), are called the principal curvatures at p. The corresponding directions
e, and ey are called the principal directions at p.

Definition 8 If a regular connected curve C on S ts such that all its tangent lines are
principal directions, then C is said to be a line of curvature.

It is important to know that the knowledge of the principal curvatures and directions
allows one to compute the normal curvature at any other direction. In particular, if § is the
angle between v € T,(S) and e;, then

Kn(0) = Ky cos? § + Ky sin? 6.

Finally, we can present the definitions of Gaussian and mean curvatures:

Definition 9 The Gaussian curvature is the determinant of the differential of the Gauss
map, and thus is given by

K = &1ks. (10)
Definition 10 The mean curvature is the negative of one half the trace of the differential

of the Gauss map, and thus is given by
K1+ K2

H="22 (11)




4 Smoothing graphs via level-sets

In this section we consider graphs, i.e., maps from U C R? to R*. The results here described
can be applied to smoothing images, which provide particular examples of graphs. One way
of smoothing a graph is to smooth its level-sets according to one of the geometric heat flows
described in Section 2. This topic has been studied in different works (2, 3, 15, 22, 23, 52, 58],
and we wish to present some of the basic results here.

Let ® : R x R x [0,7) —» R* be a graph. In the case of an image, ®(z,y,t) represents
the gray-value at the point (z,y) at time (scale) t. Define the level set X.(t) of & as

Xe(t) == {(z,y) : ®(z,y,t) =c}, (12)
and assume that this level set evolves according to
0X, ~
= 1
5 =N (13)

where 3 is, as before, a geometric function of the level set, and N its normal. We are
interested-now in studying the behavior of ® when the level sets evolves according to (13).
In the following we assume that ® is negative in the interior and positive in the exterior of
the zero level set. By differentiation (12) with respect to ¢ we obtain:

VO(X,t)- X+ 8,(X,t) = 0. (14)

(This equation holds for all level sets. Therefore, the subindex is removed from X.) Note
that for the level sets, the following relation holds:

ve -
=N
Ve |

(15)

In this equation, the left side is written in terms of the surface ®, while the right side depends
just on the curve X. The combination of equations (13) to (15) gives

& =-f|Vel, (16)

which gives the evolution equation of the graph when its level sets evolves according to (13).

Alvarez et al. [3] recently proposed an algorithm for image selective smoothing and edge
detection which is based on the flow (16) for 8 = &, i.e., for the Euclidean heat flow of the
level sets. In this case, the image (graph) evolves according to

8= 116+ V3 1) | V8 1 div (g ()

where G is a smoothing kernel (for example, a Gaussian), and f(p) is a nonincreasing function
which tends to zero as p — oo. Equation (17) can be interpreted as follows [3]:



1. The term

| V& | div (ﬁ%ﬁ) ,

which is equal to ®¢¢, where £ is the direction normal to V@, diffuses @ in the direction
orthogonal to the gradient V&, and does not diffuse in the direction of V&. Thus, the
image is being smoothed on both sides of the edge, with minimal smoothing at the
edge itself. It can be shown that the evolution

@t:“V@HdW(”gzu)

is identical to

5 — B2, — 28, 8,8,y + P20,
. o2 + P2

: (18)

which means that the level sets of ® move according to the Euclidean heat flow [3, 52].
For general results concerning the evolution of level sets, see {15, 22, 52, 62].

2. The term
flG*xVel)

is used for the enhancement of the edges. If |V | is “small”, then the diffusion is
strong. If ||V®| is “large” at a certain point (z,y), this point is considered as an edge
point, and the diffusion is weak.

Recapping, equation (17) gives an anisotropic diffusion, extending the ideas first proposed
by Perona and Malik [53]. The equation looks like the leve! sets of & are moving according
to Euclidean heat flow, with the velocity value “altered” by the function f(-).

This flow was extended to the affine case in [58] (see also [2]). In this case, the level sets
evolve according to the affine heat flow, and therefore, the graph evolves according to

& = (22%,, — 20,8, ., + B2O,,)"/° (19)

If we compare equation (18) with equation (19), we observe that the denominator is elim-
inated in the latest one. As pointed out in [58], this makes the numerical implementation
of the affine image smoothing more stable than the Euclidean one. The affine flow was
compared to the Euclidean one and to the classical heat flow in [43] for MRI images, and
produced much better results, as expected.

In real applications, like image smoothing, the original surface, and its level sets, are
non-smooth. Therefore, the previous theory should be extended to non-smooth curves. In
(2, 15, 22, 23], the authors studied the evolution of surfaces via level-sets flows, and extended
this type of flows to non-smooth curves using the theory of viscosity solutions [18]. They

10



also proved the existence of a unique “physical” weak solution to the flow, which can be
interpreted as an extension of curvature flows for singular curves. The existence of a unique
solution for Lipschitz initial curves, was studied for the affine heat flow in [8] with a different
approach as well. Therefore, we conclude that the theory of level-sets flows is well developed
for non-smooth initial curves as well, allowing the practical implementation of this kind of
smoothing process in real applications like image smoothing. Note that the algorithm for
curve evolution proposed by Osher and Sethian [52] is based precisely on level set evolutions,
making this work one of the first in the area. Figure 2 presents an example of the use of the
affine smoother for edge detection.

5 Geometric surface evolution

In this section, we summarize some of the main results on the evolution of surfaces according
to functions of their principal curvatures. This topic was first investigated by Brakke [11] for
mean curvature flows, and by many others since then. In contrast to the results presented
in Section 4, where the surface flow was driven by 2D evolutions of level sets, the flows
analyzed now will be governed by proper 3D equations. We will analyze both graph flows
and pure surface flows. As we will see, in contrast to the planar case, different constraints
must be imposed to the initial surface in order to the evolving surface remain smooth. See
also Section 9. In Sections 7 and 8, we will write down a general expression for an invariant
evolution of a given hypersurface with respect to a transformation group acting on R™.

Huisken analyzed boundary-initial value problems of mean curvature flows in [33] (see
also [34] for a nice review of some of the results). He proved that a smooth initial surface
defined on a bounded domain  with vertical contact angle ! in its boundary 0%, remains
smooth and converges to a constant value when evolving in the vertical direction (the z
axes when viewed as a 2D graph), with velocity equal to the mean curvature. Note that
the problem has both initial and boundary conditions (imposed by the vertical contact).
This result means that for a graph (or image) possessing the vertical condition property,
the curvature decreases as a function of time, and the surface is smoothed. He also proved
that if 9§ has non-negative mean curvature, then an initial smooth surface Sp converges to
the solution of the minimal surface equation when evolving according to the mean curvature
flow while keeping its value equal to a given function in the boundary 9. See also Chopp
[16] for the computation of minimal surfaces using this geometric flow.

Further results on evolution of graphs via mean curvature, without boundary conditions,
were obtained by Ecker and Huisken in [19]. Here, the authors proved that any polynomial
growth for the height and the gradient of the initial surface is preserved during the evolution.
They also proved that, for Lipschitz initial data with linear growth, the flow has a solution for
all times. The asymptotic behavior of the evolving surface was also studied by the authors,
proving that under certain conditions, the surface converges to self-similar solutions of the
mean curvature flow. It is very important to note that this condition, which is related to
the fact that the initial graph is “straight” at infinity, is necessary and sufficient. Therefore,
with this result we may also conclude that not every graph will converge to a self-similar

1The gradient is parallel to the normal.
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solution, and some other conditions must be added for convergence.

The initial-boundary problem related to the evolution of surfaces by mean curvature was
also studied recently by Oliker and Uraltseva in [48]. In this case, in contrast with the
aforementioned problem studied by Huisken, the boundary condition is given by the graph
attached to a zero value, i.e., the boundary of the surface remains fixed (S = 0 in 02). The
authors studied the existence of generalized solutions to the mean curvature flow for arbitrary
domains. They showed that such a solution my develop singularities at the boundary at some
finite time. It is precisely the possibility of the development of singularities in the boundary
which makes it a generalized solution. These singularities disappear after that, and the
solution becomes smooth up to the boundary. The authors also gave sufficient conditions on
the domain § and the initial surface Sy for this problem to have classical solutions for all
time. The asymptotic behavior of the surface was studied as well, showing that a normalized
solution of the mean curvature flow with fixed boundary, approaches exponentially the first
eigenfunction of the Laplace operator with Dirichlet data in 2. The evolution also “picks
up” the symmetries of the domain Q. For example if  is a sphere, then asymptotically the
solution becomes radially symmetric. From the results of Oliker and Uraltseva, we conclude
again that not every surface with fixed boundaries becomes smooth in time. For the surface
to became smooth, constraints on the initial data and the geometry of the boundary must
be added. Some of these results were extended in [49] for functions of the mean curvature
and other boundary conditions.

Oliker also studied the evolution of surfaces via the Gaussian curvature in [45, 48]. In
[45], the author assumed that the domain ) is convex, and the surface is attached to the
boundary 8. He studied the existence of self-similar solutions, and also showed, as in the
mean curvature flow, that the solution to the low “picks up” the symmetries of the domain.

The results presented above and in previous sections, are related to graphs or surfaces
with boundary conditions. Those results can be used for example for smoothing images,
when those images satisfy the required properties. We deal now with the evolution of proper
(closed) 3D structures.

The first results concerning the evolution of surfaces, are related to the evolution of
convex ones. For convex surfaces, analogous results to those proved in the plane by Gage and
Hamilton are valid. Huisken proved in 1984 [32] that a convex surface evolves into a round
point? when evolving in the normal direction with velocity equal to the mean curvature,
remaining smooth during the flow. Chow [17] proved the same result when the velocity
is given by the square root of the Gaussian curvature. He actually proved existence of a
smooth solution for any (positive) power of the Gaussian curvature. All these results were
related to surfaces contracting in time, i.e., moving inward. Urbas investigated the expanding
evolution of convex surfaces in [66, 67]. He studied the expansion of convex surfaces by a
family of positive, symmetric, and concave functions of their principal radii of curvature,
proving that a smooth initial surface remains smooth, and its normalized version converges
to a sphere. See the aforementioned papers and references therein for more details about
the behavior of convex surfaces deforming via geometric flows. (The above results hold more
generally for convex hypersurfaces. Here Chow [17] shows convergence to a round point when
evolving according to the n-th root of the Gaussian curvature, where n is the dimension of

2The normalized surface evolves into an sphere.
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the hypersurface.)

The situation for non-convex surfaces is much more complicated and still the subject
of much research (see for example [7, 29, 63]). In general, a non-convex surface evolving
according to the mean curvature will not remain smooth, or even connected, as we can see
from the famous dum-bell example. The question is if we can ensure for certain class of
non-convex surfaces that they remain smooth and connected when evolving according to
some geometric flow. Gerhardt [25] considers star-shaped surfaces under an outward unit
normal flow; similar results were also obtained in [65]. More precisely, Gerhardt studies the
evolution of those surfaces in the outward normal direction, with velocity equal to a function
k, where k = 1/f(k1,K2), being f a positive, symmetric function on an open, convex and
symmetric cone in R%?. The function f is also assumed to be homogeneous of degree one,
concave and increasing in the cone, as well as zero on its boundary. An example of this
function is of course the mean curvature. For these functions, he proved that an initial
star-shaped surface remains smooth and star-shaped. When the surface is normalized, it
converges into an sphere. Other results, such as short-term existence for the mean curvature
flow for Lipschitz initial data, can be found for example, in [20].

We conclude this section with some remarks on weak solutions of the aforementioned

-"gveometric flows. As pointed out in Section 2, in [15, 22], the geometric evolution of level

sets was studied in the framework of viscosity solutions. In [22] the mean curvature flow
is analyzed, while in [15] more general evolution equations are studied. In both papers the
authors showed the existence of a unique weak solution for partial differential equations in
“which the level sets evolve in time according to the mean curvature. Short-term existence
of a classical (smooth) solution is proved as well (see also [23]). Therefore, even if the initial
surface does not hold one of the properties which are required for long-term existence of
classical solutions—for example convexity—nevertheless, a unique weak solution can be con-
structed, based on the theory of viscosity solutions. These results allows one to generalize
the definition of mean curvature flows also for non-smooth surfaces. Of course, the general-
ized definition coincides with the classical one when the surface is smooth and the flow can
be defined in the framework of classical differential geometry. These generalized flows also
satisfy some of the analogous properties to the planar case. For example:

1. The order is preserved. If Sy and S, are two initial surfaces, and S; and S’, are the
corresponding generalized solutions of the mean curvature flow, and Sy C Sp, then

S: C S, forallt > 0.
2. The distance between two surfaces increases with time.

These and other properties are proved for planar curves, for geometric heat flows, in [6, 26,
27, 55, 57, 59].

The evolution of surfaces as level sets of higher order ones was proposed and also studied
experimentally by Osher and Sethian in [52, 62].
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6 Variational derivatives

In order to present our results on the general form of an invariant evolution equation®, we
need to recall a basic concept from the calculus of variations — the variational derivative of
a functional. The full details may be found in [50]. We work in an open domain M of the
Euclidean space X x U, where X = RP has coordinates = = (z?,...,z?) representing the
independent variables, and U = R has coordinate u representing the dependent variable.
(For simplicity, and since our applications are all of this form, we restrict our attention to the
case of a single dependent variable u, although extensions to several dependent variables are
straightforward.) We use the notation u(™) to denote the collection of all partial derivatives
uy = Ojyu up to order n. Here J = (71,...,7%), 1 < 7 < p, is a symmetric multi-index of
order #J = k < n. The variables (z,u(™) provide coordinates in the n-th order jet space
(or bundle) associated with M.

An n-th order variational problem consists of finding the extremals (maxima or minima)
of a functional

Ll) = /D L(z,u™)dz, ﬁ (20)

over some class of functions v = f(z) defined over a domain D C X, subject to certain
boundary conditions. We assume that the integrand L(x,u(™), which is referred to as the
Lagrangian of the variational problem, is a smooth function of z, u and the derivatives of u.

Theorem 1 The smooth eztremals of the variational problem Llu| must satisfy the Euler-
Lagrange equation

i oL
E(L)= )] (—D),gu—:o, a=1,...,q. (21)
#J=0 J

In (21), for each multi-index J = (j1,...,Jk), we define the total derivative (—D); :=
(—1)#JD.‘i1 ' Djz T Djk'

The differential operator E = (E,..., E,) giving rise to the Euler-Lagrange equation is
known as the variational derivative. For example, in the cise of one independent and one
dependent variable, the Euler-Lagrange equation associated with a Lagrangian L(z,u(™) is
the ordinary differential equation

0L 8L oL oL

— —D.|=— D? — . 1D | -— ] =
where u, = Djuis the n-th order derivative of u. For nondegenerate n-th order Lagrangians,
the Euler-Lagrange equation has order 2n.

The proof of Theorem 1 relies on the analysis of variations of the extremal u. In general,
a one-parameter family of functions u(z, €) a family of variations of a fixed function u(z) =

3When we deal with evolution equations, we refer to flows depending on only first order time derivatives,
but, possibly, higher order space derivatives. The importance of this kind of flows in image processing was
analyzed in [2].
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u(z,0) provided that, outside a compact subset K C D, the functions are all the same:
u(z,e) = u(z) for £ € D\ K. An integration by parts argument shows that if u(z,¢) is any
one-parameter family of variations of a fixed function u(z) = u(z,0), then

2 Luz,e)]

A = /D E(L)-vde, (22)

=0

where v(z) = Ou(z,€)/0¢|.=0. (Usually, this formulais used in the case u(z, €) = u(z)+ev(z),
where v(z) has compact support, but adding in higher order terms in ¢ has no effect.) In
particular, if u(z) is an extremal of the variational problem, then, by elementary calculus,
the left hand side of (22) must vanish. Since this happens for all variations v(z), we deduce
the necessary conditions in Theorem 1. O

7 Invariant hypersurface flows

Let G be a finite-dimensional, connected transformation group acting on an open subset
M C X x U ~ RP*! of the space of independent and dependent variables. In this section,
we write down the general form that any G-invariant evolution in p indepéndent and one
dependent variable must have. Thus for p = 1, we get the family of all possible invariant
curve evolutions in the plane under a given transformation group, and for p = 2 the family
of all possible invariant surface evolutions a given transformation group.

We let
w=gdz' A...Ndz® = gdz,

denote a G-invariant p—form. Note that we can consider the function g(z,u(™) as a La-

grangian of the G-invariant variational problem L[u] = [w. In applications, then, the p-

form w represents the G-invariant element of arc length, or surface area. The Euler-Lagrange

equations associated with w, then, describe the G-invariant minimal curves or surfaces. We

will always assume that the Euler-Lagrange equations are not identically zero, E(g) # 0.
The infinitesimal generators of G are vector fields of the form

0 s} s}
v = é(xau)aﬂ-' + So(xau)au = gl(m)u)ﬁ + e Ep(m,u’)b—;; + (P(mau)a_u (23)
on M. The characteristic of the vector field (23) is the first order function

Qe u) = p(z,u) ~ 3 Ei(x, ) o (2)

=1

We let pr v denote the prolongation of the vector field v to the jet space. The explicit
formulae for the prolongation can be found in [50].
We now prove the following key result:

Lemma 2 Let pr v be the prolongation of the vector field v = ¢(z,u)0: + ¢(z,u)0,. Let
Ldz be a (Lagrangian) p-form. Then

Elpr v(L) + LDiv ¢] = pr v(E[L]) + (Q. + Div ¢)E[L]. (25)
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Here

8Q 9 9¢ 9

Op
u 1 2
Qu= Bu  Bu Z du Ozt (26)
and Div € = Y2, D;t' is the total divergence of the €’s.
Proof. Let u(z,e) = u(z) + ev(z) + --- be a one-parameter family of variations of a

fixed function u(z) (as in Section 6). Let u(z,¢e,t) = exp(tv)u(z,¢) be the corresponding
transformed functions, as in [50]. The fact that the variations have compact support in D
implies that, for ¢ sufficiently small, the family u(z,¢,¢€) also satisfies the relevant boundary
conditions. As we shall see, (25) is just a statement of the equality of mixed partials. We
compute the derivative

62
Oelt

Llu(z,e,t)]

e=t=0

in two different ways, using the variational formula (22) and the basic definition of the group
action on a function. We first note that, expanding u(z,¢,t) in a Taylor series in € and ¢,
we have

u(z,e,t) = u(z) + ev(z) + tQ(z, u(z)) + etQulz, u(z))v(z) + - - . (27)

First differentiating with respect to ¢, we find, as in section 6,

%ﬁ[u(m,ﬁt)] = /DE(L)[u(q;,t)] "U(:B,t)d:c

t=0

where u(z,t) = u(z,0,t), v(z,t) = Ju(z,0,t)/0e. Note that, by the preceding expansion
(27),

v(z,t) = v(z) + tQu(z, u(z))v(z) + - - -. (28)
Therefore
afatﬁ[u(:c, €,t)) L = /D{pr v(E(L))v + E(L)Quv + E(L)vDiv {}de,

the final term coming from the change in the p—form dz due to the group transformations.
On the other hand, if we first differentiate with respect to ¢, we find

0

= Llu(z,e,t)] - /D {pr v(L)[u(z, )] + Llu(z, ¢)|Div ¢}dz.
Therefore,
Bzat [u(z, €, t)] . = /D Elpr v(L) + LDiv {]dz
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_where I is a differential invariant of G.

Since these two integrals must agree for arbitrary variations v, we conclude the truth of the
identity (25). O

Remark. In particular, if L = g, then the p—form gdz is G-invariant, so

pr v(g) + gDiv £ = 0. (29)
Therefore (25) implies the identity
pr v[E(g)] + (Div £ + Qu)E(g) = 0, (30)

where E = E(g).
We can now prove the main result of this paper:

Theorem 2 Notation as above. Then every G—invariant evolution equation has the form

__9
“= B (31)

Proof. Let
— u =P (32)
be a G-invariant flow. Then
pr v[u; — P] = Quu¢ — pr v[P] = 0. (33)
Thus, the evolution (32) is invariant if and only if
Q.P = pr v[P]. (34)
Next note that we get from (34, 30) that

pr v[E(g)P] = prv([E(g)]P + pr v[P]E(g)
= (—Div ¢ - Qu)E(g)P + QuE(9)P

= (—Div £)E(g)P. (35)
Therefore,
prv [M] _ E(g)Ppr vig] — gpr v[E(g)P]
P
_ E(g)P(-Div &) + E(g)PDiv ¢ _
g

This means that E(g)P/g is invariant, hence

g
P=—"_I
E(g)
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where I is a G-invariant function, which completes the proof. O

Remark. Theorem 2 and Lemma 2 also extend to several dependent variables (suitably
reinterpreted, since you can’t divide by E(g)). Here you need as many independent volume
forms as the number of dependent variables, and the 1/E(g) becomes the matrix inverse of
the variational derivatives of the volume forms.

We should also remark that an alternative proof of Theorem 2, based on the “variational
bicomplex”, was communicated to us by Ian Anderson and Juha Pohjanpelto.

We will call a group G acting on M C X x U volume preserving if it leaves the (p + 1)-
form dz A du = dz' A --- A deP A du invariant. Equivalently, using (26), the infinitesimal
condition reads

—Pagi (990__ )
O—Zawi+b-1;—D1v§+Qu. (36)

Proposition 1 Suppose G is a connected transformation group, and gdz a G—invariant p-
form such that E(g) # 0. Then E(g) is a differential invariant if and only of G is volume
preserving.

Proof. This follows trivially from the fundamental equation (30) and the infinitesimal
volume preserving condition (36). Since

pr V[E(g)] + (Div £ + Qu)E(g) = 0,
we conclude that E(g) is invariant, i.e., pr v[E(g)] = 0, if ard only if (36) holds. O

Corollary 1 Let G be a connected volume preserving transformation group. Then the G-
invariant flow of lowest order has the form

us = Cg, (37)

where w = gdz' A ... A dzP is the invariant p—form of minimal order such that E(g) # 0.

Remark. The p-form of minimal order will be unique unless G has a differential invariant
of equal or lower order than g.

8 Affine invariant surface flows

In this section, we describe the simplest possible affine invariant surface evolution. This gives
the surface version of the affine shortening flow for curves. This equation was also derived
using completely different methods by [4]. Note that besides affine invariance, a number of
properties were required in [4] to obtain the flow we present below (some of these properties
are related to the importance of the flow being an “evolution equation”). In our approach,
after the starting point of formulation of an evolution equation, the only requirement besides
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the affine invariance, is to be the simplest possible flow. That is, the only requirement is
“the simplest flow which admits the affine group as its symmetry group.”

We define the (special) affine group on R? as the group of transformations generated by
SL3(R) (the group of 3 x 3 matrices with determinant 1) and translations.

Let S be a smooth strictly convex surface in R3, which we write locally as the graph
(z,y,u). The Gaussian curvature is given by

2
zy

(T+u2 T ul)

Upgllyy — U

Now from [10, 12], the affine invariant metric is given by

g =k /det gij = £/ /1 +u2 + u?,

where g;; are the coefficients of the first fundamental form.
Thus from Corollary 1, we conclude:

Corollary 2 Notation as above. Then

uy = ek 1+l + u2, B " (38)

(for ¢ a constant) is the simplest affine invariant surface flow. This corresponds to the global
evolution

Sy = csMN, (39)
where N denotes the inward normal.
We will call the evolution
Sy = KY4N, (40)
the affine surface flow. Note that it is the surface analogue of the affine heat equation (9).

Remarks.

1. Recently, it has been announced that a convex (C?) surface will converge to an el-
lipsoidal point under the affine surface flow (40); [5, 47]. Indeed, one must verify
that the affine curvature [30] becomes constant for the corresponding normalized di-
lated surfaces flow. (Another possibility would be to show that the affine isoperimetric
inequality converges to the right value [41].) Of course, this result generalizes in a
straightforward way to convex hypersurfaces in any dimension (where one uses the
(n + 2)-nd root of the Gaussian curvature for n the dimension of the hypersurface).

2. In general, Chow [17] has shown that a convex hypersurface converges smoothly to a
point under the flow defined by any power 8 > 0 of the Gaussian curvature. Moreover,
it is shown that for 8 = 1/n where n is the dimension of the hypersurface, the point is
round. Other than 8 = 1/n,1/(n + 2), the shape of the point is not known.
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3. Finally, V. Caselles and C. Sbert have recently shown that a dumb-bell does not become
singular under the flow (40) [14] (they actually take (s'/*)* as velocity). This is in
contrast to flow via mean curvature. On the other hand, they also presented examples
where the flow disconnects an initially connected non-convex surface. Several examples
of this flow, as well as the mean curvature one, can be found in this paper as well.

9 Concluding remarks

In this work, we first reviewed basic results concerning geometric smoothing of surfaces.
We considered both 22D smoothing processes, based on smoothing graphs via level set
smoothing, and pure 3D processes. When dealing with 3D surfaces, we presented results
related to the evolution of graphs and pure three dimensional objects. The results concerned
the evolution via functions of the principal curvatures, such as the mean and Gaussian
curvatures. Unfortunately, the results expected from the planar theory do not hold in the
3D case. An arbitrary regular surface can develop singularities when evolving according to
the Gaussian or mean curvature, or even other more general functions as we described in
this paper. Therefore, these kind of flows cannot be used for smoothing general surfaces.
However, they can be used for specific graphs or surfaces, e.g. star-shaped surfaces. We
are currently investigating the evolution of surfaces by other functions of their principal
curvature. Qur goal with these functions is to achieve surface flows with analogous behavior
to those of planar geometric flows, and then to be able to perform geometric smoothing of
more general surfaces.

Another topic that we are currently investigation is the possibility of smoothing 3D
surfaces via geometric 2D flows applied to curves on the surface, different from the level
sets. One possibility is to smooth lines of curvature, or lines of maximal slope. The main
advantage of smoothing 3D objects via 2D geometric flows is the existence of a well developed
theory for these kind of flows, as we saw in Section 2.

In the second part of the paper we presented a general formulation for invariant geometric
flows of hypersurfaces. This result completes the theory started in [51] for planar curves.
We showed that the invariant flows can be formulated as functions of the invariant metric
and invariant curvature, which are the basic differential invariant descriptors, together with
the variational derivative of this metric. As an example, we derived the simplest affine
invariant geometric flow for 3D surfaces. We also showed that if the transformation group
1s volume preserving, this variational derivative is invariant as well. Note that the invariant
geometric flows for planar curves are smoothing processes for both the Euclidean and special
affine groups, but not for the similarity, full affine, and projective ones [51]. One of the key
differences among these groups is that the first two are area preserving while the others are
not. We are currently investigating if there is any connection between the lack of smoothing
and the lack of invariance of the variational derivative for non-area preserving groups. For
such groups, we are also investigating the use of different invariant metrics to define geometric
smoothing processes. These metrics can be used either to define different “heat flows,”
obtained via derivatives according to the corresponding arc-length, or to derive geometric
variational problems which can define smoothing processes.
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Figure Captions

1. Normal curvature diagram.

2. Denoising based on the affine invariant scale-space. The original image is presented
first, then the noisy one, and then steps (different times) of the smoothing process.
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